Structural Characterization of Minor Ampullate Spidroin Domains and Their Distinct Roles in Fibroin Solubility and Fiber Formation
نویسندگان
چکیده
Spider silk is protein fibers with extraordinary mechanical properties. Up to now, it is still poorly understood how silk proteins are kept in a soluble form before spinning into fibers and how the protein molecules are aligned orderly to form fibers. Minor ampullate spidroin is one of the seven types of silk proteins, which consists of four types of domains: N-terminal domain, C-terminal domain (CTD), repetitive domain (RP) and linker domain (LK). Here we report the tertiary structure of CTD and secondary structures of RP and LK in aqueous solution, and their roles in protein stability, solubility and fiber formation. The stability and solubility of individual domains are dramatically different and can be explained by their distinct structures. For the tri-domain miniature fibroin, RP-LK-CTD(Mi), the three domains have no or weak interactions with one another at low protein concentrations (<1 mg/ml). The CTD in RP-LK-CTD(Mi) is very stable and soluble, but it cannot stabilize the entire protein against chemical and thermal denaturation while it can keep the entire tri-domain in a highly water-soluble state. In the presence of shear force, protein aggregation is greatly accelerated and the aggregation rate is determined by the stability of folded domains and solubility of the disordered domains. Only the tri-domain RP-LK-CTD(Mi) could form silk-like fibers, indicating that all three domains play distinct roles in fiber formation: LK as a nucleation site for assembly of protein molecules, RP for assistance of the assembly and CTD for regulating alignment of the assembled molecules.
منابع مشابه
Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
Araneoid spiders use specialized abdominal glands to produce up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode aciniform fibers (wrapping silk) and the mechanical properties of these fibers have not been characterized previously. To gain a better understanding of the molecular radiation of spider silk fibroin genes, cDNA lib...
متن کاملFull-Length Minor Ampullate Spidroin Gene Sequence
Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the...
متن کاملStructural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation.
Spider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been ...
متن کاملAcidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1
Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by pr...
متن کاملA two-dimensional spin-diffusion NMR study on the local structure of a water-soluble model peptide for Nephila clavipes dragline silk (MaSp1) before and after spinning
INTRODUCTION The dragline silk of the golden orb web spider Nephila clavipes has received significant attention because of its remarkable mechanical properties, which include toughness and high tensile strength.1,2 This silk contains two structural proteins designated as major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2).3,4 The dominant MaSp1 can be described as AB block...
متن کامل